

El par de apriete recomendable para la sujeción de un tornillo depende del tipo de tornillo, del diámetro nominal del tornillo y del coeficiente de fricción entre tornillo y tuerca, entre otras variables. En la siguiente tabla se ha considerado un coeficiente de fricción de µ=0,30.

Diámetro nominal	Sección nominal mm ²	Fuerzas de pretensado Fv (kN)			Par de apriete MA (Nm)		
		50	70	80	50	70	80
M2	2.07	0.23	0.49	0.66	0.18	0.38	0.51
М3	5.03	0.40	0.86	1.1	0.63	1.3	1.8
М6	8.78	0.90	1.9	2.6	1.4	3.0	4.0
M8	14.2	1.5	3.2	4.3	2.8	6.1	8.1
M10	20.1	2.1	4.5	6.0	4.9	10	14
M12	36.6	3.9	8.3	11	12	25	33
M14	58	6.1	13	18	24	51	68
M16	84.3	9	19	26	41	88	117
M18	115	12	26	35	66	141	188
M20	157	17	36	49	102	218	291
M22	192	21	45	60	144	308	411
M24	245	27	59	78	205	439	585
M27	303	34	73	97	272	582	776
M30	353	39	84	111	338	724	965
M33	459	50	107	142	503	1080	1440
M36	561	61	131	174	680	1460	1940
M39	694	76			930		
M42	817	89			1190		
M45	976	108			1550		

Estos valores son orientativos y calculados para un tornillo y tuerca hexagonales con unas características y aplicación determinadas. Dependiendo de los elementos de fijación, coeficientes de fricción y aplicación final los valores deberían ser calculados específicamente.

Para el uso de elementos de fijación en acero inoxidable es altamente recomendable enroscar de manera continuada y a poca velocidad. Si se aplica una alta velocidad de atornillad, dado el alto coeficiente de fricción del acero inoxidable, aumenta la posibilidad de gripado.

Para reducir el coeficiente de fricción es recomendable lautiliación de lubricantes especiales que facilitan el atornillado y reducen la posibilidad de gripaje.

Coeficientes de fricción típicos en inoxidable:

Clase de material	Coeficiente Fricción	Coeficiente Fricción con
tornillo y tuerca	sin lubricación	lubricante especial
A2 o A4	0.23 - 0.50	0.10 - 0.20

PAR DE APRIETE TORNILLOS MADERA DIN 7505 INOXIDABLES

A continuación se indican los pares de apriete máximos recomendables (PMA) para los tornillos en inoxidable para madera DIN 7505 A2.

Tornillos para madera (DIN 7505) inoxidables									
Diámetro	2,5	3	3,5	4	4,5	5	6		
PMA (Nm)	0,2	0,6	0,9	1,3	1,8	2,5	4		